CONTENTS

- **INTRODUCTION**
 - Versions of STATA

- **OPENING STATA**

- **THE STATA SCREEN**

- **OPENING FILES IN STATA**
 - Opening STATA Format Files
 - Opening Other Format Files

- **DATA ENTRY**
 - Adding values
 - Modifying variable names and labels
 - Saving your data
 - Exploring data
 - Browsing through your data
 - Sorting data
 - The 'DESCRIBE' command
 - The 'CODEBOOK' command
 - The 'SUMMARIZE' command
 - The 'TABULATE' command

- **DATA MANAGEMENT**
 - Creating value labels
 - Applying a value label to an existing variable
 - Creating a new categorical variable from a continuous variable
 - Changing contents of an existing variable
 - Dropping a variable
 - Keeping variables

- **DATA ANALYSIS**
 - Confidence intervals
 - Confidence interval (mean)
Confidence interval (median) .. 11
Confidence interval (proportion) .. 12
Confidence interval (difference in proportions) 12
T-tests ... 13
One sample t-test .. 13
Two sample t-test ... 13
Paired t-test ... 14
Chi-squared and Fisher's exact test ... 14
Analysis of variance (ANOVA) ... 14
Pearson correlation .. 15
Linear regression .. 15
DATA VISUALISATION .. 16
Continuous variable (Histogram) .. 16
Graph Editor ... 16
Continuous variable (Normal plot) ... 17
Categorical variable (Bar chart) ... 17
Two continuous variables (Scatterplot) 17
Adding a best fit line .. 17
DO FILES .. 18
LOG FILES ... 19
THE ‘HELP’ COMMAND ... 19
THE ‘SEARCH’ COMMAND ... 19
THE ‘FINDIT’ COMMAND .. 19
INTRODUCTION

Versions of STATA

STATA offers several different versions of their software. Each has different capabilities with respect to the number of variables and observations it can support. The version of STATA available by default in the Novell Application Window is STATA/IC 13:

<table>
<thead>
<tr>
<th>STATA/IC 13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of variables</td>
<td>2,047</td>
</tr>
<tr>
<td>Maximum number of independent variables</td>
<td>798</td>
</tr>
</tbody>
</table>

If STATA/IC 13 is not able to open or manipulate your dataset owing to the fact that it has too many variables/independent variables you must request access to STATA/SE 13 from departmental computing.

<table>
<thead>
<tr>
<th>STATA/SE 13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of variables</td>
<td>32,767</td>
</tr>
<tr>
<td>Maximum number of independent variables</td>
<td>10,998</td>
</tr>
</tbody>
</table>

OPENING STATA

To open STATA double click on the STATA/IC 13 (or STATA/SE 13) icon in the Novell Application Window.
OPENING FILES IN STATA

Opening STATA Format Files

STATA files have the file extension .dta. To open a STATA format data file in STATA:

1. Open STATA and select **FILE**, then **OPEN**.
2. Browse to your .dta file and click **OPEN**.

Opening Other Format Files

The statistical transfer tool that the School uses is called Stat/Transfer 12 and it is available in the Novel Application Window. Stat/Transfer 12 can be used to transfer data files from many different formats into STATA format (.dta).

When you open Stat/Transfer 12 you will be asked to select the file format you wish to convert. The default Input File Type is Excel. You may choose from the many Output File Types. The statistical software available on the network includes STATA/IC13 (choose STATA Standard in Stat Transfer), SAS 9.3 (choose SAS – V9 in Stat Transfer), and SPSS 20 (choose SPSS for Windows in Stat Transfer).
DATA ENTRY

You may also enter data directly into STATA by clicking on the DATA EDITOR (EDIT) icon.

Adding values

When you press the DATA EDITOR (EDIT) icon the Data Editor screen will open. To enter data simply click in the cell into which you wish to add data and type the value you wish to include in the cell.

Modifying variable names and labels

STATA defaults to naming variables ‘var1’, ‘var2’, etc. To modify the variable name in the Data Editor screen click on ‘var1’ (or ‘var2’, ‘var3’, etc.) and type your variable name (and a descriptive label if you wish).

Saving your data

To save your data click on the SAVE icon at the top of the Data Editor.

Exploring data

Browsing through your data

To look at your data (without making changes) you simply click on the Data Editor (Browse) icon.
Sorting data

To sort your data in the Data Editor simply right-click in the name of the variable (at the top of the column) that you wish to sort, then:

1. Select DATA
2. Select SORT DATA

3. Choose your sort criteria and press OK.

The ‘DESCRIBE’ command

You can use the DESCRIBE command to have STATA show you the details about a dataset (i.e. a list of the variables, the types of variables, the number of variables, and the number of observations). To have STATA describe your dataset simply open the dataset and type DESCRIBE in the command box.

The ‘CODEBOOK’ command

The CODEBOOK command allows you to see the details of a particular variable. To run the CODEBOOK command type CODEBOOK followed by the variable name (e.g. codebook popgrowth) in the command box.
The ‘SUMMARIZE’ command

If you would like to see a detailed summary of the data (rather than the dataset) simply type SUMMARIZE in the command box.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>region</td>
<td>68</td>
<td>1.5</td>
<td>7.431277</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>popgrowth</td>
<td>68</td>
<td>19.272941</td>
<td>4.715815</td>
<td>54</td>
<td>79</td>
</tr>
<tr>
<td>nppc</td>
<td>63</td>
<td>8674.957</td>
<td>10634.68</td>
<td>370</td>
<td>39980</td>
</tr>
<tr>
<td>water</td>
<td>40</td>
<td>76.1</td>
<td>17.09112</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

To see a summary of a single variable simply type SUMMARIZE followed by the variable name (e.g. summarize studytime).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>studytime</td>
<td>48</td>
<td>15.5</td>
<td>10.25629</td>
<td>1</td>
<td>33</td>
</tr>
</tbody>
</table>

To have STATA include the percentiles as well as measures of variance, skewness, and kurtosis type SUMMARIZE followed by the variable name followed by the command DETAIL (e.g. summarize studytime, detail).

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Smallest</th>
<th>Mean</th>
<th>Largest</th>
<th>Std. Dev.</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>1</td>
<td></td>
<td></td>
<td>10.25629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>2</td>
<td>1</td>
<td></td>
<td>10.25629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>4</td>
<td>2</td>
<td></td>
<td>10.25629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>7.5</td>
<td>3</td>
<td></td>
<td>10.25629</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>12.5</td>
<td></td>
<td></td>
<td>15.5</td>
<td>10.25629</td>
<td>-0.27633</td>
<td>2.34378</td>
</tr>
<tr>
<td>75%</td>
<td>23</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>32</td>
<td>34</td>
<td>105.1915</td>
<td></td>
<td>105.1915</td>
<td>-0.27633</td>
<td>2.34378</td>
</tr>
<tr>
<td>95%</td>
<td>34</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99%</td>
<td>39</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To summarise data separately by a categorical value we can use the IF command (e.g. summarize studytime if died==1).
The ‘TABULATE’ command

STATA can also display a one-way table to summarise a categorical variable. To display a one-way table type `TABULATE` followed by the variable name (e.g. `tabulate died`).

```
. tabulate died

<table>
<thead>
<tr>
<th></th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17</td>
<td>35.42</td>
<td>35.42</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>64.58</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```

A one-way table is a tabulation of one categorical variable.

If you wish STATA to show you the missing values in the one-way table type `TABULATE` followed by the variable name followed by the command `MISSING` (e.g. `tabulate died, missing`).

To create a two-way table to summarise two categorical variables together simply use the `tabulate` command followed by both variables (e.g. `tabulate died drug`). If you wish to have STATA include the row/column percentages use either the `ROW` or `COLUMN` command (e.g. `tabulate died drug, row`).

```
. tabulate died drug, row

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Total</td>
</tr>
<tr>
<td>Key</td>
<td>frequency</td>
<td>row percentage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 if patient died</td>
<td>Drug type (1-placebo)</td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.88</td>
<td>47.06</td>
<td>47.06</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>6</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>61.29</td>
<td>19.35</td>
<td>19.35</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>14</td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>41.67</td>
<td>29.17</td>
<td>29.17</td>
<td>100.00</td>
</tr>
</tbody>
</table>
```

A two-way table is a tabulation of two categorical variables.

You may also use the `tabulate` command to tabulate a categorical variable by a continuous variable by typing `TABULATE` followed by the variable name followed by the `SUMMARIZE` command (e.g. `tabulate died, summarize(studytime)`).
DATA MANAGEMENT

STATA allows you to manipulate data in existing variables or by creating new variables. Though it is possible to type commands directly into the command pane, we will use the drop-down menus to manipulate our data.

Creating value labels

You can create value labels that can be quickly applied to new variables. To create a pre-set value label click on DATA in the menu bar, then DATA UTILITIES, then LABEL UTILITIES, then select MANAGE VALUE LABELS.

Click CREATE LABEL.

In the Create Label box type a name for your label (e.g. YesNo, LivedDied, CaseControl).

Enter a value you wish to label in the VALUE box and type the label in the LABEL box, then click ADD.

Do this for all the labels you wish to include (e.g. for a binary variable where each participant was coded as ‘0’ if they lived and ‘1’ if they died, make sure you label the values for both ‘0’ and ‘1’.

Applying a value label to an existing variable

To apply a value label to an existing variable click DATA in the menu bar, then select VARIABLES MANAGER.

Click once on the variable (on the left) to which you wish to add your value label.

On the right of the screen under VARIABLE PROPERTIES, select the value label you wish to apply from the VALUE LABEL drop down box.
Click APPLY and open your data in your Data Browser to make sure the label has been applied.

Creating a new categorical variable from a continuous variable

Let us suppose we would like to create a new categorical variable from a continuous variable for age at start of study. To do this we may like to see the range of ages first by typing SUMMARIZE followed by the name of the variable for age (e.g. summarize age).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>48</td>
<td>55.875</td>
<td>5.659205</td>
<td>47</td>
<td>67</td>
</tr>
</tbody>
</table>

Let us then create a new categorical variable with three equal age categories.

To create a new variable (which we will modify later) simply click on the DATA menu then select CREATE OR CHANGE DATA, and CREATE NEW VARIABLE.

Select a name for your variable and type it into the Variable Name box.

Then click your first value (e.g. 1) under SPECIFY A VALUE OR AN EXPRESSION.

Click on the IF/IN tab.

Under IF: (EXPRESSION) type the name of the variable followed by your condition for the value you have entered (i.e. 1). For example, we may want the value 1 to include the first tertile (i.e. ages 47-53) so we would type age<=53 in the box.

Click OK.

Changing contents of an existing variable

To finish our new variable (by adding the last two tertiles) we need to modify the new variable by adding values for 2, and 3.
To modify an existing variable click on the DATA menu, then select CREATE OR CHANGE DATA, and CHANGE CONTENTS OF VARIABLE.

Select the name of the new variable in the Variable Drop-down.

Under NEW CONTENTS (VALUE OR EXPRESSION) type your second value (i.e. 2).

Click the IF/IN tab.

Under IF: (EXPRESSION) type the name of the variable followed by your condition for the value you have entered (i.e. 2). For example, we may wish the new value to include the second tertile (i.e. ages 54-60) so we would type \texttt{age} \geq 54 \text{ & } \texttt{age} \leq 60 \text{ in the box.}

Press SUBMIT (not OK, we still have one more value to set) to run the command.

To add our third value click on the MAIN tab again.

Under NEW CONTENTS (VALUE OR EXPRESSION) type your third value (i.e. 3).

Click the IF/IN tab.

Under IF: (EXPRESSION) type the name of the variable followed by your condition for the value you have entered (i.e. 3). For example, we may wish the new value to include the third tertile (i.e. ages 61-67) so we would type \texttt{age} > 60 \text{ & } \texttt{age} \leq 67 \text{ in the box.}

We need to add this expression (\texttt{age} \neq .) in order to tell STATA to exclude missing values.

Alternately, as we know the uppermost value from our summarize command, we could have just written \texttt{age}>60 \text{ & } \texttt{age}<67 \text{ which would not have labelled the missing values.}
Dropping a variable

To drop a variable from a dataset simply type DROP followed by the name of the variable (e.g. drop drug).

Keeping variables

If you have a dataset with many variables of which you only wish to keep a few, it might be easier to use the KEEP command rather than the DROP command (e.g. keep studytime died drug age)

DATA ANALYSIS

STATA is capable of carrying out many different types of analyses. We will review only the most basic commands below. For more complex analyses please refer to: An Introduction to STATA for Health Researchers (Third Edition) by Svend Juul and Morten Frydenberg (2010).

Alternately you can use the SEARCH or FINDIT commands to look for guidance.

Confidence intervals

Confidence interval (mean)

Click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select SUMMARY AND DESCRIPTIVE STATISTICS, then choose CONFIDENCE INTERVALS.

Choose your variable and change your confidence level if you wish.

Press OK.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>studytime</td>
<td>48</td>
<td>15.5</td>
<td>1.480360</td>
<td>12.52188 18.47812</td>
</tr>
</tbody>
</table>

Confidence interval (median)

Click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select SUMMARY AND DESCRIPTIVE STATISTICS, then choose CENTILES WITH CIS.

Choose your variable and change your confidence level if you wish (in the OPTIONS tab).

Press OK.
Confidence interval (proportion)

Click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select SUMMARY AND DESCRIPTIVE STATISTICS, then choose BINOMIAL CI CALCULATOR.

Indicate your sample size and the proportion for which you wish to obtain a confidence interval.

Adjust your confidence interval if you wish.

Press OK.

Confidence interval (difference in proportions)

Click on STATISTICS in the menu at the top of the screen, then select EPIDEMIOLOGY AND RELATED, then select TABLES FOR EPIDEMIOLOGISTS, followed by COHORT STUDY RISK-RATIO ETC CALCULATOR.

Fill in your exposed/unexposed and cases/noncases.

Tick REPORT ODDS RATIO and, if you wish, FISHER’s EXACT P.

Adjust your confidence interval if you wish.

Press OK.
T-tests

One sample t-test

To run a one sample t-test (with a hypothesised mean) click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select CLASSICAL TESTS OF HYPOTHESES, followed by T TEST (MEAN-COMPARISON TEST).

Make sure ONE-SAMPLE is selected.

Indicate which variable you wish to run the test on and then enter a hypothesized mean.

Change the confidence interval if you wish.

Press OK.

```
. ttest studytime == 90
One-sample t test

Variable | Obs | Mean  | Std. Err. | Std. Dev.  | [95% Conf. Interval] |
----------|-----|-------|-----------|------------|---------------------|
studytime | 48  | 15.5  | 1.480268  | 10.056290  | 10.52188 10.47812  |

mean = mean(studytime)   t = -0.32633
Ho: mean = 90     degrees of freedom = 47
Ha: mean < 90          Ha: mean = 90          Ha: mean > 90
Pr(T < t) = 0.0000  Pr(|T| > |t|) = 0.0000  Pr(T > t) = 1.0000
```

Two sample t-test

To run a two sample t-test click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select CLASSICAL TESTS OF HYPOTHESES, followed by T TEST (MEAN-COMPARISON TEST).

Select TWO-SAMPLE USING GROUPS.

Select your continuous variable on the left (variable name) and your categorical variable on the right (group variable name).

Adjust your confidence interval if you wish.

Press OK.

```
. ttest studytime, by(died)
Two-sample t test with equal variances

Group | Obs  | Mean  | Std. Err. | Std. Dev. | [95% Conf. Interval] |
-------|------|-------|-----------|-----------|---------------------|
       | 17   | 21.17765 | 2.583719  | 10.65935  | 15.44041 26.90895  |
       | 31   | 15.41330  | 1.372777  | 8.751262  | 9.203200 21.62330  |
combined | 48  | 15.5  | 1.480368  | 10.250290 | 10.52188 19.47812  |
diff    |     | 0.690292 | 2.853957  | 2.953775  | 14.44281  |

diff = mean(0) - mean(1)   t = 3.0479
Ho: diff = 0     degrees of freedom = 46
Ha: diff < 0          Ha: diff = 0          Ha: diff > 0
Pr(T < t) = 0.9981  Pr(|T| > |t|) = 0.0008  Pr(T > t) = 0.0019
```
Paired t-test

To run a paired t-test click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select CLASSICAL TESTS OF HYPOTHESES, followed by T TEST (MEAN-COMPARISON TEST).

Select PAIRED.

Select your first and second variables (e.g. pre-intervention CD4 count, and post-intervention CD4 count).

Adjust your confidence interval if you wish.

Press OK.

```
. ttest bp_before — bp_after
Paired t test

Variable | Obs | Mean | Std. Err. | Std. Dev. | [95% Conf. Interval]
---------|-----|------|-----------|-----------|---------------------
bp_before | 120 | 156.45 | 1.059766 | 11.289854 | 154.5912 — 158.5088
bp_after  | 120 | 151.3583 | 1.242334 | 14.177824 | 149.7986 — 153.9213

mean(diff) = mean(bp_before — bp_after)  t = 3.3372
Ho: mean(diff) = 0  degrees of freedom =  119

Ha: mean(diff) < 0  Ha: mean(diff) ≠ 0  Ha: mean(diff) > 0
Pr(|T| > |t|) = 0.9984  Pr(|T| > |t|) = 0.0011  Pr(|T| > |t|) = 0.0006

```.

Chi-squared and Fisher’s exact test

To have STATA calculate Pearson’s chi-squared and/or Fisher’s exact test use the TABULATE command (see above), followed by either CHI2 or EXACT or both. (e.g. `tabulate died sex, chi2` or `tabulate died sex, exact` or `tabulate died sex, chi2 exact`).

Analysis of variance (ANOVA)

To have STATA create an ANOVA table click on STATISTICS in the menu at the top of the screen, then select LINEAR MODELS AND RELATED, followed by ANOVA/MANOVA, and ONE-WAY ANOVA.

If you wish you may tick BONFERRONI.

Click OK.

```
. oneway stdgtime age, bonferroni
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>2212.90736</td>
<td>16</td>
<td>138.30671</td>
<td>1.41</td>
<td>0.2113</td>
</tr>
<tr>
<td>Within groups</td>
<td>2547.88333</td>
<td>26</td>
<td>97.995128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4760.7907</td>
<td>42</td>
<td>113.352159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bartlett's test for equal variances:  ch2(df) = 12.0278  Prob(ch2) = 0.443

```
Pearson correlation

To have STATA calculate a Pearson correlation coefficient click on STATISTICS in the menu at the top of the screen, then select SUMMARIES, TABLES, AND TESTS, then select PAIRWAISE CORRELATIONS.

Click on your variables (one at a time) in the drop down menu (e.g. studytime age).

Tick the box next to PRINT SIGNIFICANCE LEVEL FOR EACH ENTRY and, if you like, the box next to SIGNIFICANCE LEVEL FOR DISPLAYING WITH A STAR.

Click OK.

\[
\begin{array}{c|c|c}
\hline
\text{studytime} & \text{age} & \\
\hline
\text{studytime} & 1.0000 & \\
\text{age} & -0.3862^* & 1.0000 \\
& & 0.0105 \\
\hline
\end{array}
\]

Linear regression

To produce a linear regression click on STATISTICS in the menu at the top of the screen, then select LINEAR MODELS AND RELATED, followed by LINEAR REGRESSION.

Enter your dependent and independent variables (NOTE: the dependent variable is the event studied and expected to change when the independent variable is altered).
DATA VISUALISATION

All of the functions for creating visualisations of your data can be accessed through the GRAPHICS menu at the top of the STATA screen.

Unlike most spreadsheet software, in STATA you will select the type of chart or graph you wish to create before you select the data.

Continuous variable (Histogram)

To create a histogram for a continuous variable click GRAPHICS, then select HISTOGRAM.

Choose the variable you wish the histogram to represent, and make sure the box next to DATA ARE CONTINUOUS is ticked.

Under Y-axis tick FRACTION.

Click on the DENSITY PLOTS tab and select ADD NORMAL DENSITY PLOT – this will display a normal curve on your histogram.

Click OK.

Graph Editor

To edit your graph or chart click on the GRAPH EDITOR icon in the toolbar at the top of your graph or chart.

In the graph editor you will need to click on the element of the graph or chart in order to be provided with the options to edit that element. (e.g. to change the
Continuous variable (Normal plot)

To create a normal plot for a variable that is continuous click on GRAPHICS, then DISTRIBUTIONAL GRAPHS, then select NORMAL QUANTILE PLOT.

Choose the variable you wish the normal plot to represent and click OK.

Categorical variable (Bar chart)

To create a bar chart for a variable that is categorical click on GRAPHICS, then select HISTOGRAM.

Choose the categorical variable that you wish the bar chart to represent and make sure to select DATA ARE DISCRETE.

Under Y-axis click FRACTION.

Click OK.

Two continuous variables (Scatterplot)

You can have STATA create a scatterplot from two continuous variables by selecting GRAPHICS, then TWOWAY GRAPH.

Click CREATE.

Make sure you have ticked BASIC PLOTS under Choose a Plot Category and Type, and select SCATTER.

In the Y-variable and X-variable sections choose the continuous variables you wish the scatterplot to represent and click ACCEPT.

Adding a best fit line

Click CREATE again and this time tick FIT PLOTS under Choose a Plot Category and Type, and select LINEAR PREDICTION.

Choose the same Y-variable and X-variable as you did for the scatterplot and then click ACCEPT.

Click OK.
DO FILES

STATA has a text editor feature that you can use to document the commands you have run, and which you might like to run again (all at once) in the future.

To start a Do-file click on the DO-FILE EDITOR button to open a blank Do-file.

Once you have opened a new Do-file you must save it by clicking SAVE.

To add to your Do simply copy and paste commands into to Do-file editor. Alternately you can right click on a command in the Review Panel on the left of the screen and select

To execute your Do with the Do-file Editor open click EXCEUTE DO.

To open your Do-file click FILE, then OPEN, then change the file type to DO FILES (*.do; *.ado). Then browse to your Do-file and click OPEN.
LOG FILES

STATA can also 'record' all of your commands (and the resultant outputs that appear in the Results window) in a Log File.

To start recording a Log File click LOG BEGIN. You will be prompted to save your log file. Save your log to your hard drive.

At the bottom of the Results window you will be able to see the status of your Log file.

To close (i.e. stop) or suspend (i.e. pause) the Log file click on the LOG icon again – the pop-up box will prompt you to choose to either close or suspend the Log.

To view a log file simply double click on the file.

THE ‘HELP’ COMMAND

STATA includes very detailed guidance on the use of commands. If you are unsure of how a command is used, what it does, and the appropriate syntax for its use you can type HELP followed by the name of the command (e.g. help egen).

THE ‘SEARCH’ COMMAND

If you do not know the command you are looking for and wish to have STATA search for you, you can use the SEARCH command followed by your search term (e.g. search regression).

THE ‘FINDIT’ COMMAND

You can also use the FINDIT command to have STATA search its own help database as well as the STATA website, the STATA Journal, etc. This is a good way to find a range of information on a topic (including videos and journal articles). To use this command simply type FINDIT followed by your search term (e.g. findit regression).